Hackerrank Class 2 - Find the Torsional Angle Solution
You are given four points and in a 3-dimensional Cartesian coordinate system. You are required to print the angle between the plane made by the points and in degrees(not radians). Let the angle be .
where x and x .
Here, means the dot product of and , and x means the cross product of vectors and . Also, .
Input Format
One line of input containing the space separated floating number values of the and coordinates of a point.
Output Format
Output the angle correct up to two decimal places.
Sample Input
0 4 5
1 7 6
0 5 9
1 7 2
Sample Output
8.19
Solution in python3
Approach 1.
from math import acos, pi
p = []
for i in range(4):
p.append(list(map(float, input().split())))
def cross(x, y):
return [x[1] * y[2] - x[2] * y[1], x[2] * y[0] - x[0] * y[2], x[0] * y[1] - x[1] * y[0]]
def dot(x, y):
return sum([x[i] * y[i] for i in range(len(x))])
def length(x):
return sum([a * a for a in x]) ** 0.5
def minus(x, y):
return [x[i] - y[i] for i in range(len(x))]
X = cross(minus(p[1], p[0]), minus(p[2], p[1]))
Y = cross(minus(p[2], p[1]), minus(p[3], p[2]))
print("%.2f" % (acos(dot(X, Y) / length(X) / length(Y)) / pi * 180))
Approach 2.
from math import *
points = []
def cross(a, b):
return [a[1] * b[2] - b[1] * a[2], a[2] * b[0] - b[2] * a[0], a[0] * b[1] - b[0] * a[1]]
def dot(a, b):
return a[0] * b[0] + a[1] * b[1] + a[2] * b[2]
def length(a):
return sqrt(a[0] * a[0] + a[1] * a[1] + a[2] * a[2])
def minus(a, b):
return [a[0] - b[0], a[1] - b[1], a[2] - b[2]]
for i in range(4):
points.append(list(map(float, input().split())))
X = cross(minus(points[0], points[1]), minus(points[1], points[2]))
Y = cross(minus(points[1], points[2]), minus(points[2], points[3]))
cosphi = dot(X, Y) / (length(X) * length(Y))
print("%.2f" % degrees(acos(cosphi)))
Approach 3.
import operator
import math
def cross(p1, p2):
return [p1[1]*p2[2]-p1[2]*p2[1], p1[2]*p2[0]-p1[0]*p2[2], p1[0]*p2[1]-p1[1]*p2[0]]
def dot(p1, p2):
return sum(map(operator.mul, p1, p2))
def subtract(a, b):
return list(map(operator.sub, a, b))
def length(a):
return math.sqrt(dot(a,a))
def parsePoint(str):
components = str.split()
return list(map(float, components))
A = parsePoint(input())
B = parsePoint(input())
C = parsePoint(input())
D = parsePoint(input())
AB = subtract(A,B)
BC = subtract(B,C)
CD = subtract(C,D)
X = cross(AB,BC)
Y = cross(BC,CD)
PHI = math.degrees(math.acos(dot(X,Y)/(length(X)*length(Y))))
print("{0:.2f}".format(PHI))
Solution in python
Approach 1.
from math import sqrt, acos, pi
A = [float(x) for x in raw_input().split()]
B = [float(x) for x in raw_input().split()]
C = [float(x) for x in raw_input().split()]
D = [float(x) for x in raw_input().split()]
def dot(X, Y):
res = 0
for i in range(3):
res += X[i] * Y[i]
return res
def cross(X, Y):
return [X[1]*Y[2]-X[2]*Y[1],
-X[0]*Y[2]+X[2]*Y[0],
X[0]*Y[1]-X[1]*Y[0]]
def norm(X):
return sqrt(X[0]**2 + X[1]**2 + X[2]**2)
def vec(X, Y):
res = [0, 0, 0]
for i in range(3):
res[i] = Y[i] - X[i]
return res
AB = vec(A, B)
BC = vec(B, C)
CD = vec(C, D)
X = cross(AB, BC)
Y = cross(BC, CD)
cosPHI = dot(X, Y)/norm(X)/norm(Y)
PHI = 180 * acos(cosPHI) / pi
print "%0.2f" % PHI
Approach 2.
from math import acos
a = map(float,raw_input().split(' '))
b = map(float,raw_input().split(' '))
c = map(float,raw_input().split(' '))
d = map(float,raw_input().split(' '))
def dot_product(a,b):
return a[0]*b[0] + a[1]*b[1] + a[2]*b[2]
def length(a):
return (a[0]**2 + a[1]**2 + a[2]**2)**0.5
def cross_product(a,b):
return [ a[1]*b[2] - a[2]*b[1], a[0]*b[2] - a[2]*b[0], a[0]*b[1] - a[1]*b[0]]
def diff(a,b):
return [ a[0]-b[0], a[1]-b[1], a[2]-b[2]]
#a = [0, 4, 5]
#b = [1, 7, 6]
#c = [0, 5, 9]
#d = [1, 7, 2]
ab = diff(a,b)
bc = diff(b,c)
cd = diff(c,d)
x = cross_product(ab,bc)
y = cross_product(bc,cd)
cos_phi = dot_product(x,y) / length(x)/length(y)
phi_rad = acos(cos_phi)
pi = 3.141592653589793
phi = phi_rad*360/2/ pi
print("%.2f" % phi)
Approach 3.
# Enter your code here. Read input from STDIN. Print output to STDOUT
import math
class points(object):
def __init__(self,x,y,z):
self.x = x
self.y = y
self.z = z
def distance(A,B):
C = points(0,0,0)
C.x = A.x - B.x
C.y = A.y - B.y
C.z = A.z - B.z
return C
def crossProduct(AB,BC):
E = points(0,0,0)
E.x = AB.y*BC.z - AB.z*BC.y
E.y = AB.z*BC.x - AB.x*BC.z
E.z = AB.x*BC.y - AB.y*BC.x
return E
def dotProduct(X,Y):
return X.x*Y.x + X.y*Y.y + X.z*Y.z
def modulus(X,Y):
return math.sqrt((X.x**2+X.y**2+X.z**2)*(Y.x**2+Y.y**2+Y.z**2))
[p,q,r] = [float(i) for i in raw_input().split()]
A = points(p,q,r)
[p,q,r] = [float(i) for i in raw_input().split()]
B = points(p,q,r)
[p,q,r] = [float(i) for i in raw_input().split()]
C = points(p,q,r)
[p,q,r] = [float(i) for i in raw_input().split()]
D = points(p,q,r)
AB = distance(A,B)
BC = distance(B,C)
CD = distance(C,D)
X = crossProduct(AB,BC)
Y = crossProduct(BC,CD)
print "%.2f"%math.degrees(math.acos(dotProduct(X,Y)/modulus(X,Y)))