You've successfully subscribed to The Poor Coder | Hackerrank Solutions
Great! Next, complete checkout for full access to The Poor Coder | Hackerrank Solutions
Welcome back! You've successfully signed in.
Success! Your account is fully activated, you now have access to all content.

Python

Beeze Aal

Hackerrank Mean, Var, and Std Solution

mean The mean tool computes the arithmetic mean along the specified axis. import numpy my_array = numpy.array([ [1, 2], [3, 4] ]) print numpy.mean(my_array, axis = 0) #Output : [ 2. 3.] print numpy.mean(my_array, axis = 1) #Output : [ 1.5 3.5] print numpy.mean(my_array, axis
Beeze Aal

Hackerrank Polynomials Solution

poly The poly tool returns the coefficients of a polynomial with the given sequence of roots. print numpy.poly([-1, 1, 1, 10]) #Output : [ 1 -11 9 11 -10] roots The roots tool returns the roots of a polynomial with the given coefficients. print numpy.roots([1, 0, -1]) #Output
Beeze Aal

Hackerrank Linear Algebra Solution

The NumPy module also comes with a number of built-in routines for linear algebra calculations. These can be found in the sub-module linalg. linalg.det The linalg.det tool computes the determinant of an array. print numpy.linalg.det([[1 , 2], [2, 1]]) #Output : -3.0 linalg.eig The linalg.
Beeze Aal

Hackerrank Eye and Identity Solution

Solution in python3Approach 1. import numpy print(numpy.eye(*map(int,input().split())))Approach 2. import numpy N, M = map(int, input().split()) print(numpy.eye(N, M))Solution in python import numpy N,M = map(int,raw_input().split()) print numpy.eye(N,M)
Beeze Aal

Hackerrank Zeros and Ones Solution

Solution in python3Approach 1. import numpy N = list(map(int, input().split())) print(numpy.zeros(N, int)) print(numpy.ones(N, int))Approach 2. import numpy size = tuple(map(int,input().strip().split())) print( numpy.zeros(size, int) ) print( numpy.ones(size, int) )Approach 3. import numpy N = [int(x)
Beeze Aal

Hackerrank Floor, Ceil and Rint Solution

Solution in python3Approach 1. import numpy a = numpy.array(input().split(),float) print(numpy.floor(a),numpy.ceil(a),numpy.rint(a),sep="\n")Approach 2. from numpy import * A = array([float(x) for x in input().split()],float) print(floor(A),ceil(A),rint(A),sep = '\n')Approach
Beeze Aal

Hackerrank Array Mathematics Solution

Basic mathematical functions operate element-wise on arrays. They are available both as operator overloads and as functions in the NumPy module. import numpy a = numpy.array([1,2,3,4], float) b = numpy.array([5,6,7,8], float) print a + b #[ 6. 8. 10. 12.] print numpy.add(a,
Beeze Aal

Hackerrank Shape and Reshape Solution

Solution in python3Approach 1. import numpy print( numpy.array(input().split(" "),int).reshape(3,3) )Approach 2. import numpy l=input().split() a=numpy.array(l,int) a.shape=(3,3) print(a)Approach 3. import numpy A = numpy.array(input().strip().split(),int) print(numpy.reshape(A,(3,3)
Beeze Aal

Hackerrank Detect HTML Tags, Attributes and Attribute Values Solution

You are given an HTML code snippet of  lines. Your task is to detect and print all the HTML tags, attributes and attribute values. Print the detected items in the following format:Tag1Tag2-> Attribute2[0] > Attribute_value2[0]-> Attribute2[1] > Attribute_value2[1]->
Beeze Aal

Hackerrank HTML Parser - Part 2 Solution

*This section assumes that you understand the basics discussed in HTML Parser - Part 1 .handle_comment(data) This method is called when a comment is encountered (e.g. <!--comment-->). The data argument is the content inside the comment tag: from HTMLParser import HTMLParser class MyHTMLParser(HTMLParser): def
Beeze Aal

Hackerrank HTML Parser - Part 1 Solution

HTML Hypertext Markup Language is a standard markup language used for creating World Wide Web pages. Parsing Parsing is the process of syntactic analysis of a string of symbols. It involves resolving a string into its component parts and describing their syntactic roles. HTMLParser An HTMLParser instance is fed HTML
Beeze Aal

Hackerrank Class 2 - Find the Torsional Angle Solution

You are given four points  and  in a 3-dimensional Cartesian coordinate system. You are required to print the angle between the plane made by the points  and  in degrees(not radians). Let the angle be . where  x  and  x . Here,  means the dot product of  and , and  x  means the