You've successfully subscribed to The Poor Coder | Hackerrank Solutions
Great! Next, complete checkout for full access to The Poor Coder | Hackerrank Solutions
Welcome back! You've successfully signed in.
Success! Your account is fully activated, you now have access to all content.

Beeze Aal

## Hackerrank Mean, Var, and Std Solution

mean The mean tool computes the arithmetic mean along the specified axis. import numpy my_array = numpy.array([ [1, 2], [3, 4] ]) print numpy.mean(my_array, axis = 0) #Output : [ 2. 3.] print numpy.mean(my_array, axis = 1) #Output : [ 1.5 3.5] print numpy.mean(my_array, axis
Beeze Aal

## Hackerrank Eye and Identity Solution

Solution in python3Approach 1. import numpy print(numpy.eye(*map(int,input().split())))Approach 2. import numpy N, M = map(int, input().split()) print(numpy.eye(N, M))Solution in python import numpy N,M = map(int,raw_input().split()) print numpy.eye(N,M)
Beeze Aal

## Hackerrank Floor, Ceil and Rint Solution

Solution in python3Approach 1. import numpy a = numpy.array(input().split(),float) print(numpy.floor(a),numpy.ceil(a),numpy.rint(a),sep="\n")Approach 2. from numpy import * A = array([float(x) for x in input().split()],float) print(floor(A),ceil(A),rint(A),sep = '\n')Approach
Beeze Aal

## Hackerrank Shape and Reshape Solution

Solution in python3Approach 1. import numpy print( numpy.array(input().split(" "),int).reshape(3,3) )Approach 2. import numpy l=input().split() a=numpy.array(l,int) a.shape=(3,3) print(a)Approach 3. import numpy A = numpy.array(input().strip().split(),int) print(numpy.reshape(A,(3,3)
Beeze Aal

## Hackerrank Detect HTML Tags, Attributes and Attribute Values Solution

You are given an HTML code snippet of  lines. Your task is to detect and print all the HTML tags, attributes and attribute values. Print the detected items in the following format:Tag1Tag2-> Attribute2[0] > Attribute_value2[0]-> Attribute2[1] > Attribute_value2[1]->
Beeze Aal

## Hackerrank Class 2 - Find the Torsional Angle Solution

You are given four points  and  in a 3-dimensional Cartesian coordinate system. You are required to print the angle between the plane made by the points  and  in degrees(not radians). Let the angle be . where  x  and  x . Here,  means the dot product of  and , and  x  means the