## Hackerrank - Max Min Solution

You will be given a list of integers, , and a single integer . You must create an array of length from elements of such that its *unfairness* is minimized. Call that array . Unfairness of an array is calculated as

Where:

- *max* denotes the largest integer in

- *min* denotes the smallest integer in

As an example, consider the array with a of . Pick any two elements, test .

Testing for all pairs, the solution provides the minimum unfairness.

**Note**: Integers in may not be unique.

**Function Description**

Complete the *maxMin* function in the editor below. It must return an integer that denotes the minimum possible value of *unfairness*.

maxMin has the following parameter(s):

*k*: an integer, the number of elements in the array to create*arr*: an array of integers .

**Input Format**

The first line contains an integer , the number of elements in array .

The second line contains an integer .

Each of the next lines contains an integer where .

**Constraints**

**Output Format**

An integer that denotes the minimum possible value of *unfairness*.

**Sample Input 0**

```
7
3
10
100
300
200
1000
20
30
```

**Sample Output 0**

`20`

**Explanation 0**

Here ; selecting the integers , unfairness equals

```
max(10,20,30) - min(10,20,30) = 30 - 10 = 20
```

**Sample Input 1**

```
10
4
1
2
3
4
10
20
30
40
100
200
```

**Sample Output 1**

`3`

**Explanation 1**

Here ; selecting the integers , unfairness equals

```
max(1,2,3,4) - min(1,2,3,4) = 4 - 1 = 3
```

**Sample Input 2**

```
5
2
1
2
1
2
1
```

**Sample Output 2**

`0`

**Explanation 2**

Here . or give the minimum unfairness of .

### Solution in Python

```
def maxMin(k, arr):
k-=1
arr.sort()
return min(arr[i+k]-arr[i] for i in range(len(arr)-k))
n = int(input())
k = int(input())
arr = [int(input()) for _ in range(n)]
print(maxMin(k, arr))
```