# Count Triplets Solution in C++

You are given an array and you need to find number of tripets of indices  such that the elements at those indices are in geometric progression for a given common ratio  and .

For example, . If , we have  and  at indices  and .

Function Description

Complete the countTriplets function in the editor below. It should return the number of triplets forming a geometric progression for a given  as an integer.

countTriplets has the following parameter(s):

• arr: an array of integers
• r: an integer, the common ratio

Input Format

The first line contains two space-separated integers  and , the size of  and the common ratio.
The next line contains  space-seperated integers .

Constraints

Output Format

Return the count of triplets that form a geometric progression.

Sample Input 0

4 2
1 2 2 4

Sample Output 0

2

Explanation 0

There are  triplets in satisfying our criteria, whose indices are  and

Sample Input 1

6 3
1 3 9 9 27 81

Sample Output 1

6

Explanation 1

The triplets satisfying are index , , , ,  and .

Sample Input 2

5 5
1 5 5 25 125

Sample Output 2

4

Explanation 2

The triplets satisfying are index , , , .

### Solution in C++

#include<bits/stdc++.h>
using namespace std;

map<long long,long long> l,r;

int main()
{
long long n, k,ans=0 ;
scanf("%lld%lld",&n,&k);
long long a[n];
for(int i=0;i<n;i++)
scanf("%lld",&a[i]);
for(int i=0;i<n;i++)
r[a[i]]++;
for(int i=0;i<n;i++)
{
r[a[i]]--;
if(a[i]%k==0)
{
ans+=l[a[i]/k]*r[a[i]*k];
}
l[a[i]]++;
}
printf("%lld\n",ans);
return 0;
}