## Hackerrank - Matrix Layer Rotation Solution

You are given a 2D matrix of dimension and a positive integer . You have to rotate the matrix times and print the resultant matrix. Rotation should be in anti-clockwise direction.

Rotation of a matrix is represented by the following figure. Note that in one rotation, you have to shift elements by one step only.

It is guaranteed that the minimum of *m* and *n* will be even.

As an example rotate the Start matrix by 2:

```
Start First Second
1 2 3 4 2 3 4 5 3 4 5 6
12 1 2 5 -> 1 2 3 6 -> 2 3 4 7
11 4 3 6 12 1 4 7 1 2 1 8
10 9 8 7 11 10 9 8 12 11 10 9
```

**Function Description**

Complete the *matrixRotation* function in the editor below. It should print the resultant 2D integer array and return nothing.

matrixRotation has the following parameter(s):

*matrix*: a 2D array of integers*r*: an integer that represents the rotation factor

**Input Format**

The first line contains three space separated integers, , , and , the number of rows and columns in , and the required rotation.

The next lines contain space-separated integers representing the elements of a row of .

**Constraints**

**Output Format**

Print each row of the rotated matrix as space-separated integers on separate lines.

**Sample Input**

**Sample Input #01**

```
4 4 2
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
```

**Sample Output #01**

```
3 4 8 12
2 11 10 16
1 7 6 15
5 9 13 14
```

**Explanation #01**

The matrix is rotated through two rotations.

```
1 2 3 4 2 3 4 8 3 4 8 12
5 6 7 8 1 7 11 12 2 11 10 16
9 10 11 12 -> 5 6 10 16 -> 1 7 6 15
13 14 15 16 9 13 14 15 5 9 13 14
```

**Sample Input #02**

```
5 4 7
1 2 3 4
7 8 9 10
13 14 15 16
19 20 21 22
25 26 27 28
```

**Sample Output #02**

```
28 27 26 25
22 9 15 19
16 8 21 13
10 14 20 7
4 3 2 1
```

**Explanation 02**

The various states through 7 rotations:

```
1 2 3 4 2 3 4 10 3 4 10 16 4 10 16 22
7 8 9 10 1 9 15 16 2 15 21 22 3 21 20 28
13 14 15 16 -> 7 8 21 22 -> 1 9 20 28 -> 2 15 14 27 ->
19 20 21 22 13 14 20 28 7 8 14 27 1 9 8 26
25 26 27 28 19 25 26 27 13 19 25 26 7 13 19 25
10 16 22 28 16 22 28 27 22 28 27 26 28 27 26 25
4 20 14 27 10 14 8 26 16 8 9 25 22 9 15 19
3 21 8 26 -> 4 20 9 25 -> 10 14 15 19 -> 16 8 21 13
2 15 9 25 3 21 15 19 4 20 21 13 10 14 20 7
1 7 13 19 2 1 7 13 3 2 1 7 4 3 2 1
```

**Sample Input #03**

```
2 2 3
1 1
1 1
```

**Sample Output #03**

```
1 1
1 1
```

**Explanation #03**

All of the elements are the same, so any rotation will repeat the same matrix.

### Solution in Python

```
def matrixRotation(matrix,r):
m, n = len(matrix), len(matrix[0])
b = [[None]*n for _ in range(m)]
indices = []
for c in range(min(m,n)//2):
index = []
for i in range(c,n-c): index.append((c,i))
for i in range(c+1,m-1-c): index.append((i,n-1-c))
for i in range(c,n-c)[::-1]: index.append((m-1-c,i))
for i in range(1+c,m-1-c)[::-1]: index.append((i,c))
if not index:
break
indices.append(index)
rotated = []
for index in indices:
k = r%len(index)
rotated.append(index[k:]+index[:k])
for (x,y) in zip(indices,rotated):
for ((c,d),(e,f)) in zip(x,y):
b[c][d] = matrix[e][f]
return b
m,n,r = map(int,input().split())
matrix = [input().split() for i in range(m)]
for i in matrixRotation(matrix,r):
print(*i)
```