Hackerrank - Matrix Layer Rotation Solution
You are given a 2D matrix of dimension and a positive integer . You have to rotate the matrix times and print the resultant matrix. Rotation should be in anti-clockwise direction.
Rotation of a matrix is represented by the following figure. Note that in one rotation, you have to shift elements by one step only.
It is guaranteed that the minimum of m and n will be even.
As an example rotate the Start matrix by 2:
Start First Second
1 2 3 4 2 3 4 5 3 4 5 6
12 1 2 5 -> 1 2 3 6 -> 2 3 4 7
11 4 3 6 12 1 4 7 1 2 1 8
10 9 8 7 11 10 9 8 12 11 10 9
Function Description
Complete the matrixRotation function in the editor below. It should print the resultant 2D integer array and return nothing.
matrixRotation has the following parameter(s):
- matrix: a 2D array of integers
- r: an integer that represents the rotation factor
Input Format
The first line contains three space separated integers, , , and , the number of rows and columns in , and the required rotation.
The next lines contain space-separated integers representing the elements of a row of .
Constraints
Output Format
Print each row of the rotated matrix as space-separated integers on separate lines.
Sample Input
Sample Input #01
4 4 2
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
Sample Output #01
3 4 8 12
2 11 10 16
1 7 6 15
5 9 13 14
Explanation #01
The matrix is rotated through two rotations.
1 2 3 4 2 3 4 8 3 4 8 12
5 6 7 8 1 7 11 12 2 11 10 16
9 10 11 12 -> 5 6 10 16 -> 1 7 6 15
13 14 15 16 9 13 14 15 5 9 13 14
Sample Input #02
5 4 7
1 2 3 4
7 8 9 10
13 14 15 16
19 20 21 22
25 26 27 28
Sample Output #02
28 27 26 25
22 9 15 19
16 8 21 13
10 14 20 7
4 3 2 1
Explanation 02
The various states through 7 rotations:
1 2 3 4 2 3 4 10 3 4 10 16 4 10 16 22
7 8 9 10 1 9 15 16 2 15 21 22 3 21 20 28
13 14 15 16 -> 7 8 21 22 -> 1 9 20 28 -> 2 15 14 27 ->
19 20 21 22 13 14 20 28 7 8 14 27 1 9 8 26
25 26 27 28 19 25 26 27 13 19 25 26 7 13 19 25
10 16 22 28 16 22 28 27 22 28 27 26 28 27 26 25
4 20 14 27 10 14 8 26 16 8 9 25 22 9 15 19
3 21 8 26 -> 4 20 9 25 -> 10 14 15 19 -> 16 8 21 13
2 15 9 25 3 21 15 19 4 20 21 13 10 14 20 7
1 7 13 19 2 1 7 13 3 2 1 7 4 3 2 1
Sample Input #03
2 2 3
1 1
1 1
Sample Output #03
1 1
1 1
Explanation #03
All of the elements are the same, so any rotation will repeat the same matrix.
Solution in Python
def matrixRotation(matrix,r):
m, n = len(matrix), len(matrix[0])
b = [[None]*n for _ in range(m)]
indices = []
for c in range(min(m,n)//2):
index = []
for i in range(c,n-c): index.append((c,i))
for i in range(c+1,m-1-c): index.append((i,n-1-c))
for i in range(c,n-c)[::-1]: index.append((m-1-c,i))
for i in range(1+c,m-1-c)[::-1]: index.append((i,c))
if not index:
break
indices.append(index)
rotated = []
for index in indices:
k = r%len(index)
rotated.append(index[k:]+index[:k])
for (x,y) in zip(indices,rotated):
for ((c,d),(e,f)) in zip(x,y):
b[c][d] = matrix[e][f]
return b
m,n,r = map(int,input().split())
matrix = [input().split() for i in range(m)]
for i in matrixRotation(matrix,r):
print(*i)